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Multilayer networks continue to gain significant attention in
many areas of study, particularly due to their high utility in model-
ing interdependent systems such as critical infrastructures, human
brain connectome, and socioenvironmental ecosystems. However,
clustering of multilayer networks, especially using the informa-
tion on higher-order interactions of the system entities, still
remains in its infancy. In turn, higher-order connectivity is often
the key in such multilayer network applications as developing
optimal partitioning of critical infrastructures in order to iso-
late unhealthy system components under cyber-physical threats
and simultaneous identification of multiple brain regions affected
by trauma or mental illness. In this paper, we introduce the
concepts of topological data analysis to studies of complex multi-
layer networks and propose a topological approach for network
clustering. The key rationale is to group nodes based not on
pairwise connectivity patterns or relationships between obser-
vations recorded at two individual nodes but based on how
similar in shape their local neighborhoods are at various res-
olution scales. Since shapes of local node neighborhoods are
quantified using a topological summary in terms of persistence
diagrams, we refer to the approach as clustering using persis-
tence diagrams (CPD). CPD systematically accounts for the impor-
tant heterogeneous higher-order properties of node interactions
within and in-between network layers and integrates informa-
tion from the node neighbors. We illustrate the utility of CPD
by applying it to an emerging problem of societal importance:
vulnerability zoning of residential properties to weather- and
climate-induced risks in the context of house insurance claim
dynamics.

multilayer network | clustering | topological data analysis |
persistence diagram | insurance risk

Many modern human-made systems, e.g. critical infrastruc-
tures integrating operations of vital societal physical and

cyber services such as power systems, telecommunication, and
transportation, as well as a broad range of natural phenomena
from human brain functionality to socioenvironmental ecosys-
tems and virus–host interactomes, exhibit a sophisticated, highly
interdependent structure (1–7). Modeling such interdependency
can be addressed with multilayer graphs, resulting in a recent
surge of interest in the interdisciplinary analysis of complex
multilayer networks. A multilayer network accounts for rela-
tionships among multiple layers of connectivity (i.e., networks),
where each layer represents a system or subsystem. Dictated
by emerging applications in security and resilience of critical
infrastructures to natural hazards, terrorist activities, and cyber
threats (8–14), one of the primary goals of such studies nowadays
is to better understand which segments of the multilayer net-
work are most vulnerable to a particular hazard and to develop
proactive strategies for optimal partitioning, thereby isolating
unhealthy components and mitigating the risk of further failure
propagation (15–17).

Similar to the case of unilayer networks, the objective of opti-
mal partitioning, or clustering, of multilayer networks is to unveil
meaningful patterns of node groupings and to divide nodes into
communities, by accounting for the different interaction types
nodes can be involved both within and in-between layers of the
considered multilayer graph. Still, contrary to unilayer networks,

clustering of multilayer graphs remains a substantially less-
developed area (18–20), and most currently existing methods are
based on an adaptation of conventional clustering approaches
for unilayer networks such as stochastic block models (21–24)
and layer aggregation in the spectral domain (25–28) to the mul-
tilayer case. However, the clustering of multilayer graphs poses
a number of new, specific research challenges. First, partitioning
of multilayer graphs requires accounting for both the important
relationships between nodes in the same layer and interactions
among nodes in different layers. Second, such layers, as, for
instance, in the case of critical infrastructures formed by trans-
portation and power grid networks, may exhibit disparate local
and global structural properties, making application of clustering
methods originating in the unilayer network analysis and based
on an aggregation of the layer information infeasible. Finally,
higher-order network structures, in the context of both uni-
layer and multilayer graphs, are often shown to exhibit stronger
signals of community existence than lower-order pairwise con-
nectivity patterns which are assessed at the level of individual
nodes and edges (29, 30). This phenomenon becomes particu-
larly important in conjunction with resilience analysis of highly
interdependent systems such as critical infrastructures when the
focus is on evaluating how multiple interconnected entities of the
systems, for example electric power substations, transportation
hubs, and telecommunication towers, jointly respond to natural
disasters and cyber attacks. Nevertheless, clustering of multi-
layer networks while accounting for higher-order connectivity
structures remains in its infancy.

Significance

Multilayer network clustering is used in such diverse areas as
optimal islanding of critical infrastructures, analysis of trade
agreements, and monitoring ecological interaction patterns.
We propose a perspective on multilayer network clustering
based on the concept of shape. By invoking the machinery
of topological data analysis, we first study a shape of each
node neighborhood and then group nodes based on how sim-
ilar shapes of their local neighborhoods are. The significance
of this methodology can be viewed through an emerging
problem of sustainability of house insurance to climate risks.
The topological perspective opens possibilities for more sys-
tematic, robust, and mathematically rigorous integration of
higher-order network properties and their interplay to the
analysis of complex networks.
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To address these challenges, we introduce the concepts of
topological data analysis (TDA) to studies of complex multi-
layer networks and propose a topological approach to network
clustering. TDA is an emerging methodology at the interface
of algebraic topology and data science (31–34) offering a math-
ematically rigorous machinery for analysis of data shape. In
particular, TDA allows one to glean a deeper insight into hid-
den mechanisms behind the data-generating process by analyzing
both topological and geometric properties of the observed data
through multiple-resolution lenses. While TDA has been proven
to deliver high utility in a very diverse set of applications, from
cancer gene expression to financial fraud to ichthyology (35–38),
TDA concepts have not yet propagated into clustering analy-
sis of complex networks. The key idea behind our topological
network clustering is to group nodes based on how similar in
shape their local neighborhoods are. In particular, the proposed
topological approach is based on the comparison of local topol-
ogy and geometry around each node using persistence diagrams
and, hence, is termed “clustering using persistence diagrams”
(CPD). The topological CPD approach to network clustering
allows both for systematic accounting of heterogeneous higher-
order properties of within and in-between network layers and
for integrating the important information from the node neigh-
bors and their interactions. In contrast to earlier (not network-
focused) TDA-based clustering approaches such as Mapper (39)
and ToMATo (40), which both act in conjunction with some
additional clustering algorithms, CPD is a stand-alone cluster-
ing approach and does not require a filter function, which is
characteristic of Mapper. Furthermore, compared to cluster-
ing using Betti numbers, a TDA-based clustering algorithm for
spatiotemporal data (41), CPD simultaneously accounts for mul-
tiple topological summaries and their interdependencies and,
as a result, shows more stable performance, especially in appli-
cation to sparse heterogeneous graph-structured data. Finally,
the area of the CPD applicability is well beyond complex net-
works and also includes multivariate point clouds and sets of
functions.

We illustrate the application of our CPD algorithm and the
utility of topological concepts for clustering of complex networks
in application to a multilayer climate-insurance network. The
insurance industry currently experiences major challenges due to
the impact of climate dynamics expressed in the rising frequency
and intensity of adverse weather events, including the so-called
low-individual but high-cumulative-impact events such as higher-
than-normal precipitation and stronger-than-usual wind speeds.
For example, ref. 42 shows that 38% of insurance companies
view climate risk as a core business issue, with implications for
governance, strategy, risk management, and operations, while
29% of the companies consider climate risk as a sustainability
issue which is evolving to a core business issue. In turn, often-
neglected low-individual but high-cumulative-impact adverse
weather events, coupled with aging critical city infrastructures,
increasingly lead to accidents of various scales and property
depreciation. One of the first tasks toward better assessment
of climate risks and development of more efficient mitigation
strategies is the identification of areas that show higher vulner-
ability not only due to the magnitude of climate trends but also
due to economic and sociodemographic patterns. However, cli-
mate variables, insured property characteristics, and associated
insurance claim dynamics tend to exhibit complex dependence
structures that are often nonlinear and nonstationary in space
and time. As a result, similarity measures based on Euclidean
distances and conventional geographic proximity might not be
appropriate metrics for optimal partitioning of such data. As
shown by refs. 43–48, such a sophisticated dependence structure
in climate variables can be addressed with complex networks.
However, no analysis has been done to capture the multivari-
ate spatiotemporal dependency for classifying the insurance

risk exposure and informing the risk mitigation strategies. We
address this knowledge gap by introducing a multilayer complex
network based on climate and home insurance variables and by
developing vulnerability zoning based on the topological CPD
approach. The proposed peril map based on shape similarities in
environmental and sociodemographic characteristics allows for
more accurate modeling of climate risk than conventional tools
based on simple geographic proximity.

Multilayer Networks
Consider a single-layer network modeled by a graph G =
(V ,E ,ω), where V is the set of nodes and E ⊂V ×V is the
set of edges. The total number of nodes in G is n = |V |. Here
ω :V ×V 7→R is an edge weight function such that each edge
euv ∈E has a weight ωuv . The adjacency matrix A is symmetric,
i.e., Aij =Aji .

A multilayer network can be modeled by a multilayer graph,
G, consisting of m nonoverlapping layers, where each layer is
modeled with a weighted graph Gi with an associated adja-
cency matrix Ai , i = 1, . . . ,m . The elements of the set A=
{A1,A2, . . . ,Am} are referred to as the within-layer matri-
ces, representing connections along a single layer, known as
intralayer links.

To model dependencies between two graphs, Gk and Gl

with their adjacency matrices, Ak and Al , respectively (k , l =
1, 2, . . . ,m; k 6= l), we consider one-to-one symmetric intercon-
nectivity of nodes in the corresponding graphs. As a result, we
obtain a set of cross-layer adjacency matrices Dp = {Al,k , k 6= l}
that specifies the edges between nodes in different layers, where
p is the number of dependencies. That is, a multilayer net-
work, G, has a set EI (G) of interlayer links that connect nodes
across layers, i.e., for each edge (u, v)∈EI (G) we have u ∈
V (Gk ) and v ∈V (Gl) for k 6= l (49, 50). The supra-adjacency
matrix of the multilayer network G is defined as a block-matrix
structure:

A=



A1 . . . A1k · · ·A1m

...
. . .

...
. . .

...
Al1 · · ·Ak=l · · ·Alm

...
. . .

...
. . .

...
Am1· · ·Amk · · ·Am

.

The diagonal elements corresponding to the set A are within-
layer matrices. Off-diagonal matrices Alk for k , l = 1, 2, . . . ,m;
k 6= l represent interlayer links that connect nodes in layer Gk to
nodes in layer Gl (2, 51–53).

Similarity-Based Networks. Edges and edge weights in a multi-
layer network can be defined using various application-tailored
relationships and measures. In cases when there exists no
application-driven notion of edges, e.g. as flight routes in air
transportation networks or transmission lines in power grid net-
works, edges are typically constructed based on some measure
ω of similarity between nodes, resulting in a so-called similarity-
based network. One of the most widely used similarity measures
is a correlation coefficient, with applications of correlation-based
networks ranging from finance (54–56) to brain sciences (57–
59) to climatology (60–62). In this study, we follow a similar
route for our specific case study of climate-insurance multilayer
networks and construct edges in G, based on the maximum corre-
lation achieved upon nonlinear nonparametric transformations
of observed variables.

In particular, let X and Y be two time series representing the
same variable observed at different nodes (when defining A) or
different variables recorded at the same node (when definingD).
(For instance, in the context of our case study X and Y may
represent precipitation levels at two locations or precipitation
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and insurance claim records reported at the same location.)
Our goal is to find a nonlinear transformation of X and Y
such that the correlation between the transformed variables is
maximized. This step is performed using alternating conditional
expectations (ACE), which is an algorithm to find the best-fitting
additive model resulting in the maximum linear effect between
the transformed response and predictors:

ω= r∗(X ,Y ) = max
φ,θ

r [φ(X ), θ(Y )], [1]

where r∗ is the maximal correlation between the optimal trans-
formations φ(X ) and θ(Y ) of X and Y , respectively. To find
such transformations, the errors e2(θ,φ) = E[θ(Y )−φ(X )]2 are
alternatingly minimized first with respect to θ(Y ) (keeping
E(θ2) = 1), then with respect to φ(X ) for a given θ(Y ). The
solutions can be written as

θ(Y ) =
E[φ(X )|Y ]

‖E[φ(X )|Y ]‖ ; φ(X ) = E[θ(Y )|X ], [2]

where ‖·‖=
√

E(·)2.
The minimization process begins with an initial guess for one

of the functions (θ(Y ) =Y /‖Y ‖). Each iteration performs one
pair of the single-function minimizations using Eq. 2, until a com-
plete iteration pass fails to decrease e2. The algorithm converges
to the optimal transformations θ and φ (63).

Node Embedding. Extraction of meaningful information from
complex networks is computationally and memory-intensive.
Node embedding provides a framework to combat both these
issues by transforming the network into a low-dimensional space
while preserving structural information. The variety of methods
for node embedding can be divided into two categories: matrix
factorization methods and random walk methods (see refs. 64
and 65 and references therein). The former enjoy a strong the-
oretical backing as the approach relies on matrix factorization
techniques with tractable optimization functions that converge.
Here we use multilayered network embedding (MANE), which is
an extended form of matrix factorization for multilayer networks.

To describe MANE, let Fi ∈Rni×di for all nodes in the i-th
layer (i = 1, . . . ,m), where ni is number of nodes in the i-th
layer and di is the embedding dimension. The objective of the
algorithm is to find a low-dimensional vector representation that
retains the node proximity in the topological structure of the
network. The objective function is

max
Fi

tr(F>i LiFi) +α

m∑
j=1

tr(F>i DijFjF
>
j D>ij Fi), [3]

where Dij denotes network dependency between layers i and j ;
Li is the normalized Laplacian matrix, and the embedding repre-
sentation Fi is a matrix such that F>i Fi = I (∀i = 1, . . . ,m) (66).
The embedding is essentially obtained by concatenating the top
di eigenvectors of Li +α

∑m
j=1 DijFjF

>
j D>ij . The first term in

Eq. 3 corresponds to embedding of a single-layer network to a
low-dimensional representation which aims to preserve the node
proximity in the original single-layer structure. The second term
in Eq. 3 corresponds to embedding cross-layer connectivity (i.e.,
dependency across single-layer networks). Here the idea is to
use interplay among node latent features in different layers as
an approximation to real dependencies.

An advantage of using a matrix factorization technique is the
reduced number of tuning parameters. Parameter tuning in most
of these methods most often involves random walk procedures
that require a selection of the walk length, number of ran-

dom walks, etc. The parameters are usually tuned on a labeled
training dataset.

Background on Topological Data Analysis
To infer meaningful and actionable inferences from the embed-
dings, clustering algorithms can be employed. Forming clusters
based on dynamics of shape helps in discovering persistent clus-
ters of nodes that follow similar patterns. TDA is useful here,
due to its inherent reliance on similarity graphs.

Consider an (edge)-weighted graph G . If we select a certain
threshold (or scale) εj > 0 and keep only edges with weights
ωuv ≤ εj , we obtain a graph Gj with an associated adjacency
matrix Auv =1ωuv≤εj . Now, changing the threshold values ε1 <
ε2 < . . .< εn results in a hierarchical nested sequence of graphs
G1⊆G2⊆ . . .⊆Gn that is called a “network filtration.” One
of the widely used simplicial complexes is the Vietoris–Rips
(VR) complex. The VR complex at threshold νj is defined as
VRj = {σ⊂V |ωuv ≤ νj for all u, v ∈σ}.

Armed with the filtration, we assess changes in topological
summaries of the network to detect long-lived (or persistent)
features over a wide range of thresholds εj . The objective is to
detect features which are long-lived (or persistent) over varying
thresholds ε (32, 67, 68). Such persistent features are likely to
characterize the intrinsic system organization.

The lifespans of topological features under VR filtration can
be represented with a barcode plot where each bar depicts the
lifespan of each topological feature. Births and deaths of topo-
logical features under VR filtration are also visualized with a
persistence diagram (PD), where each topological feature is
denoted by a point with (x , y) coordinates corresponding to the
birth and death times, respectively. Hence, features with longer
lifespans, i.e., stronger persistence, are those points that are far
from the main diagonal and are considered as topological signals.
For a more detailed description see SI Appendix, section 1. PD
captures the geometry and topology of the data and hence can be
used in different learning tasks. Next, we introduce a clustering
algorithm based on the PD of the data.

CPD
We propose a method for clustering of multilayer networks
which is motivated by the following two overarching queries.
First, in contrast to supervised community detection and
classification, unsupervised learning of multilayer networks is
still noticeably less developed (69, 70). Second, most current
approaches for clustering of multilayer networks are based on
graph embedding into a Euclidean space via graph spectral
decomposition and, as such, do not explicitly account for local
underlying graph geometry and topology. Our goal is to cluster
multilayer networks in the unsupervised setting from a perspec-
tive of data shape similarities recorded at multiple resolutions.
To systematically quantify the shape dynamics of multilayer net-
works at evolving similarity scales we introduce the multilens
tools of TDA into the method CPD.

The rationale behind our clustering approach is the following.
Two points are close enough to be grouped into one cluster if
their local neighborhoods are similar in shape at all resolution
scales. To compare the shapes we conduct the following steps:

1) Consider Xn = (x1, . . . , xn) in some metric space (X,D).
2) Set resolution thresholds ν1 <ν2 < . . .< νK and con-

struct a VR filtration VRν1(N (i))⊆VRν2(N (i))⊆ . . .⊆
VRνK (N (i)).

3) Compute a local topological summary of xi in the form of a
persistence diagram PD(i), i = 1, . . . ,n .

4) For all local neighborhoods N (i) of xi and N (j ) of xj , i , j =
1, 2, . . . ,n , compute a pairwise topological or data shape dis-
similarity as the 2-Wasserstein distance (37, 71) between their
respective persistence diagrams PD(i) and PD(j ):
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W2 (xi , xj ) =W2(PD(i),PD(j )) [4]

=

inf
γ

∑
x∈PD(i)∪∆

‖x − γ(x )‖2∞

1/2

,

where ∆ = {(x , x )|x ∈R} and γ is taken over all bijective maps
from PD(i)∪∆ to PD(j )∪∆, counting multiplicities. The 2-
Wasserstein distance allows us to systematically quantify how
similar shapes of the two node neighborhoods are. That is,
we count and compare all loops, voids, and other topological
features in each node neighborhood.

5) Form a distance graph G over W2(N (i),N (j )), i , j =
1, 2, . . . ,n , with adjacency matrix A, where

Aij =

{
1, ifW ij

2 ≥κ
0, otherwise.

The cutpoint κ is defined via elbow plot or cross-validation.

6) The connected components of G are our resulting clusters.

Hence, CPD utilizes both the distance function and local geo-
metric information around the points. SI Appendix, Algorithm 1
outlines the proposed CPD approach to clustering of multi-
layer networks. Fig. 1 shows a schematic illustration of the CPD
algorithm.

We compare the results of CPD to some of the most widely
used unsupervised learning algorithms, namely (complete link-
age) hierarchical clustering (72–74) and K -medoids (75–77). The
K -medoids, also known as partitioning around medoids, is a vari-
ant of K -means that is more robust to noise and outliers because
it uses an actual, most centrally located point as the cluster center
instead of a mean.

However, the most widespread implementation of K -medoids
is using Euclidean distances, which ignore the geometry of the
data. Therefore, in our study, we propose a K -medoids concept
using Wasserstein distances—partitioning around Wasserstein
medoids (K -PaWM)—that focuses on local geometry.

Performance Measures. The performance of the clustering algo-
rithms is compared using internal cluster validation measures,
specifically, mean within sum of squares (WSS), mean between
sum of squares (BSS), and WB-ratio (78, 79).

Assume the data x1, . . . , xn in some metric space S with
metric dist are partitioned into exhaustive and nonoverlapping
sets C1, . . . ,Ck . The centroids of these clusters are r1, . . . , rk .
The WSS and BSS are used as performance measures of the
algorithm to group similar objects together and to differentiate
between two groups of objects. Lower WSS and higher BSS are

indicators of the efficacy of a clustering algorithm. The WB-ratio
(80) is defined as WB-ratio =WSS/BSS , where

WSS =
1

|Ci |
∑
x∈Ci

dist(x ,µ)2 , µ=
1

|Ci |
∑
x∈Ci

x ;

BSS =
1

k

k∑
r=1

dist(ri , rk )2 , c =
1

n

n∑
x=1

x .

A smaller WB-ratio indicates that the clusters are tight and well-
separated, while larger ratios indicate the opposite. These met-
rics are all calculated using Wasserstein distance, as Euclidean
measures would not provide an adequate assessment of the
algorithm’s performance.

Experiments
We illustrate the utility of the topological clustering for multi-
layer networks in application to simulated and real data, par-
ticularly, climate-insurance networks. Clustering performance is
measured by three internal cluster validation metrics, i.e., WSS,
BSS, and WB-ratio. We compare the clustering performance of
the CPD algorithm with respect to the following three methods:
hierarchical, K -medoids, and K -PaWM algorithms.

Here we focus on the results of applying multilayer network
analysis and topological clustering to the real home insurance
data. (Detailed experiments on the two simulated multilayer
networks are presented in SI Appendix. Our analysis of the sim-
ulated data suggests that CPD tends to deliver better clustering
performance compared to benchmark methods for both simu-
lated networks.) There are two datasets used in our case study.
The first dataset comprises information about home insurance
claims due to precipitation-induced damage for 504 forward
sortation areas (FSA) in Ontario, Canada, over a 10-y period
(2002 to 2011). The dataset contains the following informa-
tion for each FSA: number of insurance claims, total amount
of losses incurred by an insurance company (CAD), date of
damage, average age of the houses (years), and average credit
score. To remove the effects of risk exposure evolving over
time due to sociodemographic growth, the number and amount
of claims are normalized by the number of homes insured
in the postal area on each day (81). To remove the effect of
inflation, home insurance losses are converted to the prices of
2002 (CAD2002) using a metropolitan area composite index of
apartment building construction. The insurance claim data are
provided by one of the largest insurance companies in North
America. The second dataset comprises daily precipitation (mil-
limeters) obtained for the same 10-y period (2002 to 2011) from
the ERA-Interim reanalysis product (82) with 0.1◦ spatial grid
resolution.

The distributions of the number of claims and incurred losses
are alike spatially (Fig. 2). The spatial pattern of credit scores is
the least noticeable among all considered variables, whereas the
precipitation has the strongest pattern, showing an increase in

Fig. 1. Pipeline of the CPD algorithm for a three-layer network.
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Fig. 2. Spatial distribution of the variables.

the southeast direction (toward the regions of Lake Ontario and
Lake Erie; Fig. 2).

We aggregate the daily data by week and remove or substi-
tute missing and anomalous values of each variable by an average
value. As a result, for each FSA we have 520 weekly observations
(for the 10-y period) of the following five variables: number of
home insurance claims (N ), associated losses (L), average age of
the houses (H ), average credit score (C ), and total precipitation
(P).

We construct a five-layer network, where each layer corre-
sponds to one of the five variables and has 504 nodes (FSA).
Each layer is a fully connected network, where both within-
layer and cross-layer edge weights are determined by the ACE
approach. The final multilayer network has seven cross-layer
dependencies (Table 1).

The MANE algorithm requires two parameters: the balancing
parameter α and the embedding dimension d . The parameter
values are set based on the findings of ref. 66. Since in our case
the contribution of the factors to insurance losses is unknown, all
of the factors are weighted equally, and hence α= 1. A number
of embedding dimensions have been tried and the performance
does not improve after d = 30. Hence, d is set to 30.

The embedded nodes of the resulting network are clustered
using the proposed method of CPD and the baseline method of
hierarchical clustering. Based on the elbow plot, the hierarchical

clustering is stopped at 10 clusters. The CPD algorithm has two
parameters, namely, the filtration length and the number of near-
est neighbors. We select a filtration length of 30 and 30 nearest
neighbors based on tuning experiment. The choice of 30 for both
is made for computational efficiency. The K -medoids algorithm
has only one parameter, namely, the number of clusters that is
chosen using the elbow plot. As a result, 13 clusters are formed
using K -medoids and 10 using K -PaWM.

Table 2 compares the four clustering algorithms based on
three validation metrics. The WB-ratio indicates that the meth-
ods that use Wasserstein distances perform segmentation up to
10 times better than those that use Euclidean distances.

The CPD algorithm delivers competitive performance in
identifying clusters, with the BSS at least three times higher

Table 1. Climate-insurance multilayer network

Layers GN, GL, GH, GC , GP

Within-layer adjacency matrix AN, AL, AH, AC , AP

No. of nodes in each layer ni = 504, i = 1, 2, . . . , 5
Cross-layer dependency matrix ANL, APL, APN,

ANH, ANC , ALH, ALC

Intralayer and interlayer edges Each layer and cross-layer is a
complete graph
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Table 2. Summary of the internal validation measures

Metric CPD Hierarchical K-medoids

Wasserstein Euclidean
WSS 89.35 142.18 51.44 139.27
BSS 71.24 23.13 24.34 14.11
WB-ratio 1.25 23.13 2.11 9.87

than by other algorithms. On the other hand, K -PaWM has
the lowest WSS and is comparable to CPD. Both methods
that use Euclidean metrics perform poorly on these measures.
We now turn to assessing clustering performance in terms of
interpretability.

Fig. 3 presents the number of clusters and their spatial loca-
tions in Ontario, Canada, delivered by the four clustering algo-

rithms. CPD yields the maximum number of 15 clusters (Table
3). All four methods tend to form a large cluster in the northwest
of Ontario. To profile the clusters from the four methods, we
study the differences in cluster means of the various attributes.

The CPD has formed two large clusters (Clusters 1 and 2)
with over 70% of the FSAs (Table 3). These two clusters have
similar precipitation, credit scores, average numbers of claims,
and average losses per claim, but Cluster 2 is in the more urban
areas of Ontario and has a higher-than-average house age. Clus-
ter 3 has the highest average precipitation and consequently has
the highest average number of claims and the highest average
loss per FSA. Remarkably, the within-cluster variability of the
attributes, e.g., precipitation and average number of claims and
losses, is smaller with CPD than with the other three cluster-
ing methods (SI Appendix, Tables S6–S9). Also, the intercluster
variability of the attributes is higher with CPD than with the

Fig. 3. Cluster labels assigned to the postal areas in southern Ontario, Canada: (A) K-PaWM, (B) CPD, (C) hierarchical, and (D) K-medoids.
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Table 3. Profile (average) of the CPD clusters

Red shades represent very small values of the variable, yellow shades indi-
cate values near the center, and green shades represent very large values.
For two clusters, the same colored shades for a particular variable imply that
the two clusters are similar in terms of that variable.

other three clustering methods. Hence, CPD appears to better
capture the dynamics of the relationships of the atmospheric,
sociodemographic, and insurance factors, as CPD performs
clustering based on the intrinsic data shape similarities.

In contrast, hierarchical clustering does not make such a dis-
tinction and has ∼86% of the FSAs in one cluster (Cluster 1; SI
Appendix, Table S5). The other ∼14% of the FSAs are divided
among three clusters. Cluster 2 has the highest average precipita-
tion and consequently has the second-highest average number of
claims per FSA despite the lowest average house age. As Figs. 2
and 3 suggest, hierarchical clustering reflects segmentation based
predominantly on precipitation only and largely disregards all
other insurance-relevant information. This phenomenon is due
to the fact that hierarchical clustering tends to split the dataset
based on the magnitude of data variability, and precipitation
exhibits the highest variability range.

In K -medoids with Wasserstein distance (i.e., K -PaWM), the
FSAs are approximately evenly distributed in 10 clusters (SI
Appendix, Table S3). Cluster 1 has the highest average number
of claims and the highest average amount of losses. The clas-
sical K -medoids with Euclidean distance, on the other hand,
has 13 clusters with heterogeneous cluster size (SI Appendix,
Table S4). We observe that topological K -PaWM also tends
to split the clusters based on the interplay of the atmospheric,
sociodemographic, and insurance factors, while K -medoids does
not capture the signal similarly well and splits out haphazard
clusters as primarily being overindexed on precipitation data.

The graphs in Fig. 3 C and D, which are purely based
on Euclidean distances, show geographically contiguous clus-
ters due to precipitation similarities, while TDA methods (e.g.,

Fig. 3B) do not necessarily deliver geographically contiguous
clusters.

Conclusion and Discussion
In this paper we have introduced the emerging machinery of TDA
tools into the analysis of complex multilayer networks. We have
developed a topological clustering algorithm (CPD) based on a
multilens comparison of intrinsic data shapes in multilayer net-
works using a TDA concept of persistence diagram. We have
validated the utility of the CPD approach with respect to con-
ventional algorithms based on Euclidean distance, specifically,
hierarchical clustering and K -medoids. Furthermore, we have
proposed a modified version of K -medoids, K -PaWM, based
on a topological similarity measure (i.e., Wasserstein distance).
We have found that both topological approaches (i.e., CPD and
K -PaWM) are competitive alternatives to conventional cluster-
ing tools when data exhibit a complex spatiotemporal depen-
dence structure, including but not limited to geocoded multilayer
networks.

We have illustrated the utility of the proposed topological
clustering in application to a joint analysis of climate-insurance
networks. While climate networks have been considered before,
climate-induced insurance networks and multilayer climate-
insurance networks have never been studied. The proposed
methodology for peril maps and vulnerability zoning for the
weather- and climate-induced risks developed in this paper offers
multiple potential benefits to mitigate the impact of climate
change for the insurance industry, policy makers, and society in
general. First, insurance companies can adjust the range of insur-
ance products offered in less- or more-vulnerable zones (e.g.,
extra insurance against moisture in basements or lower premium
rates for houses without a basement), offer various “risk-smart”
incentives for homeowners (e.g., reduced insurance premiums, if
homeowners use a new generation of wind-resistant or energy-
efficient roofing materials), and improve calculations for net
amounts at risk (83–85). Second, many other businesses start
investing in risk-prone areas on multiple fronts, e.g., modified
buildings or homes, green energy, and hybrid vehicles. Insurance
companies can further assist the development of these businesses
by providing appropriate insurance solutions and joint initia-
tives for customer incentives. Third, a better understanding of
risky zones allows policy makers to implement various mitigation
strategies in a timely manner. For example, for more vulnerable
areas, city officials may require use of more moisture-resistant
wall materials for the construction of new buildings, pay closer
attention to the maintenance of aging infrastructure, and inte-
grate derived vulnerability zoning to the atlases of future urban
expansion. Fourth, a more accurate zoning of vulnerable areas
due to weather- and climate-induced risks allow homeowners to
make more informed decisions on buying or selling houses, to
reduce property damage as well as to avoid unintended injuries,
and even to save lives via enhancing societal alert levels on
potential climate risk in a given region. Hence, the proposed
topological clustering approach for deriving more accurate zon-
ing due to natural hazards may be viewed as one of the first
steps toward informing society on the risks associated with cli-
mate change and, hence, further facilitating the development of
a safer and more sustainable environment.

In the future, we plan to expand the proposed topological
approach to clustering and classification of dynamic multilayer
networks, as well as to derive theoretical stability guarantees
for topological graph clustering. Another interesting direction is
to combine the concept of similarity-based agglomerative clus-
tering (SBAC) (86–88) with CPD by grouping points with less
or more common shape feature in the population. We envi-
sion that such topological SBAC might be particularly useful in
biomedical imaging, such as tumor detection. More generally, we
believe that topological and geometric methods open many new
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promising perspectives for modeling, analysis, and inference for
complex multilayer networks.

Data Availability. Data is available upon request from the
corresponding author.
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networks. Nat. Ecol. Evol. 1, 101 (2017).

3. M. Pedersen, A. Zalesky, A. Omidvarnia, G. D. Jackson, Multilayer network switching
rate predicts brain performance. Proc. Natl. Acad. Sci. U.S.A. 115, 13376–13381 (2018).

4. M. Wu et al., A tensor-based framework for studying eigenvector multicentrality in
multilayer networks. Proc. Natl. Acad. Sci. U.S.A. 116, 15407–15413 (2019).
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